Die Kristallstruktur von Diimidazolylkobalt

VON MANFRED STURM, FRANZ BRANDL, DENNIS ENGEL* UND WALTER HOPPE

Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung I, D-8033 Martinsried bei München, Deutschland

(Eingegangen am 21. November 1974; angenommen am 10. März 1975)

Diimidazolylcobalt, Co(N₂C₃H₃)₂, crystallizes in the tetragonal space group $I4_1$ with cell dimensions a=b=22.872 (4), c=12.981 (3) Å. There are 32 formula units per unit cell. Three-dimensional X-ray data have been collected with Mo K α radiation on an automatic Siemens diffractometer. The structure has been solved by the heavy-atom method and successive Fourier syntheses. The absolute configuration of the measured crystal has been determined by Hamilton and Bijvoet methods and refined by least-squares methods to a final R of 0.035 for 3131 reflexions. The molecules form helices.

Einleitung

Diimidazolylkobalt, $Co(N_2C_3H_3)_2$, wurde durch Umsetzung von Bis(tetracarbonylkobalt)-Quecksilber mit Imidazol in der Gasphase dargestellt. Die Substanz schied sich in Form auberginefarbener Kristallnadeln ab (Seel & Rodrian, 1969).[†] Mit einer dreidimensionalen Röntgenstrukturanalyse wurde die Kristallstruktur bestimmt (Sturm & Hoppe, 1972).

Experimentelles

Die genauen kristallographischen Daten (Tabelle 1) und die Reflexintensitäten (Tabelle 8) wurden mit einem automatischen Siemens Einkristall-Diffraktometer bei Raumtemperatur ermittelt (∂ -2 θ Technik, Fünfpunktmessungen). Wegen des verhältnismässig hohen Absorptionskoeffizienten wurde eine Absorptionskorrektur vorgenommen (Huber & Kopfmann, 1969). Reflexe, deren gemittelte Intensitäten geringer

Tabelle 1. Kristalldaten

Formel	$C_0(N_2C_3H_3)_2$
Kristallform	Nadeln
Grösse des Messkristalls	$0,30 \times 0,28 \times 0,60$ mm
Raumgruppe	I4 ₁ , tetragonal
Auslöschungsbedingungen	hkl: h+k+l=2n
00	00l: l = 4n
Gitterkonstanten	a = b = 22,872 (4) Å
	c = 12,981 (3) Å
Formeleinheiten pro Elementarzelle	32
Formeleinheiten pro asymm. Einheit	4
Strahlung	Mo Ka ($\lambda = 0,7107$ Å)
	Nb-Filter 60 μ
Unabhängige Reflexe	3131
Beobachtete Reflexe	2813
Maximum sin θ/λ	0.5947
Lin. Absorptionskoeff.	20,359 cm ⁻¹ bei Mo Ka
Dichte, gemessen	1.50 g cm^{-3}
Dichte, berechnet	1.51 g cm^{-3}
 ,,	· -

* Gegenwärtige Anschrift: Physics Department, University of the O.F.S., Bloemfontein, South Africa.

† Wir danken Professor Dr F. Seel für die Überlassung der Kristalle.

als ihre entsprechenden doppelten Standardabweichungen waren, wurden als unbeobachtet behandelt (Less Than).

Lösung der Struktur

Zur Bestimmung der Schweratomlagen wurde eine dreidimensionale Pattersonsynthese gerechnet. Ihre Deutung war jedoch mühsam, da sich vier Co-Atome in der asymmetrischen Einheit befinden. Aus den Harkerschnitten konnte lediglich die Lage eines Co-Atoms bei x = 0,3458, y = 0,0988, z = beliebig bestimmt werden. Die drei übrigen Co-Lagen konnten erst aus zwei sukzessiven Fouriersynthesen unter Beachtung geeigneter Winkel und Abstände und unter Berücksichtigung mehrdeutiger Pattersonmaxima ermittelt werden. Zur Auffindung der acht Imidazolringe (Will, 1963; Martínez-Carrera, 1966) der asymmetrischen Einheit (ohne H-Atome) waren weitere 15 sukzessive Fouriersynthesen erforderlich. Der R-Faktor (R = $\sum \Delta F / \sum |F_o|^{\dagger}$ der so gefundenen relativen Konfiguration betrug bereits 0,14. Die Ortskoordinaten und Temperaturfaktoren sämtlicher 44 Atome wurden mit Vollmatrix Kleinste-Quadrate-Rechnung verfeinert (Busing, Martin & Levy, 1962). Da das Rechenprogramm die gleichzeitige Variation aller für die anisotrope Verfeinerung benötigten Parameter nicht gestattete, waren zu einer einmaligen Verfeinerung aller Atome zwei Rechenzyklen nötig. Dabei wurden jeweils die vier Co-Atome (die z-Koordinate von Co(3) wurde zur Fixierung der polaren Achse festgehalten) und 20 Atome von vier Imidazolringen verfeinert, während jeweils die Atomparameter der restlichen vier Imidazolringe und aller Wasserstoffatome festgehalten wurden. Die Lagekoordinaten der H-Atome wurden nach jedem vollen Verfeinerungszyklus neu berechnet (Stewart & High, 1963). Der *R*-Wert der relativen Konfiguration sank auf R = 0,037bei 3131 verwendeten Reflexen.

 $\dagger \Delta F = ||F_o| - |F_c||; F_o = F_{beobachtet}; F_c = F_{berechnet}.$

Bestimmung der absoluten Konfiguration

Diimidazolylkobalt besitzt eine enantiomorphe polare Struktur. Durch die anomale Streuung der Co-Atome sind deren Lagen in Richtung der polaren Achse mit einem Fehler behaftet (Cruickshank & McDonald, 1967). Zur Bestimmung der absoluten Konfiguration des Messkristalls (Bijvoet, Peerdeman & van Bommel, 1951) wurde u.a. das Verfahren nach Hamilton (Hamilton, 1965) angewandt. Neben den normalen Beiträgen der Atomformfaktoren (C, N und Co aus International Tables for X-ray Crystallography, 1962; H von Stewart, Davidson & Simpson, 1965) wurden $\Delta f'_{Co} = 0.37$ und $\Delta f''_{Co} = 1.06$ (Mo Ka Strahlung, Cromer, 1965) in die Rechnung eingeführt. Das Verfahren von Hamilton lieferte für die vorhandene relative Konfiguration $R^+ = 0.03797$ und für den Enantiomer $R^- = 0,03620$ bei 2579 berücksichtigten Reflexen. Das Verhältnis der beiden R-Faktoren is 1,049, die Signifikanz nach Hamilton beträgt P=0,005.

In einer parallelen Rechnung wurden aus den unter Berücksichtigung der anomalen Streuung berechneten Strukturamplituden Bijvoet-Paare bestimmt, die grosse Differenzen aufwiesen und deren Strukturamplituden eine bestimmte Mindestgrösse überschritten, damit eine gute Messgenauigkeit erreicht werden konnte (Engel, 1972). Die ausgewählten Bijvoet-Paare wurden je zehnmal im 'Schaukelverfahren' mit einer überlangen Messzeit gemessen. Die beobachteten Bijvoet-Differenzen wurden statistisch gemittelt und mit den berechneten verglichen. Der effektive Wert $\Delta f_{eff}^{'}$ des anomalen Formfaktors von Co konnte bestimmt werden (Engel & Sturm, 1974).

Die Ergebnisse, die aus der Messung von 26 Bijvoet-Paaren gewonnen wurden, sind in Tabelle 2 zusammengefasst. Alle Hinweise deuten an, dass die absolute Konfiguration das Spiegelbild der zufällig gefundenen relativen Konfiguration ist. Die Bestimmung der absoluten Konfiguration von fünf weiteren Diimidazolylkristallen erbrachte jeweils dieselbe absolute Konfiguration wie die des Messkristalls.

Fig. 2. x-y Projektion der asymmetrischen Einheit mit thermischen Schwingungsellipsoiden.

Verfeinerung der absoluten Konfiguration

Damit die absolute Konfiguration unter Berücksichtigung der anomalen Streuung weiter verfeinert werden konnte, musste das Kleinste-Quadrate Programm ergänzt werden. Die F_c wurden dispersionskorrigiert (F_{CDP}). Die F_o wurden mit dem sogenannten Dispersionsverhältnis (F_c/F_{CDP}) multipliziert und so die Dispersion rechnerisch eliminiert. Die weitere Verfeinerungsrechnung konnte mit diesen modifizierten Strukturamplituden in der üblichen Weise durchgeführt werden.

Die Co-N-Abstände verbesserten sich erwartungsgemäss. Die durchschnittliche Verschiebung der Co-

Fig. 1. Stereobild der asymmetrischen Einheit; Blickrichtung parallel zur z-Achse auf den Schwerpunkt der asymmetrischen Einheit.

Tabelle 2. Zur Bestimmung der absoluten Konfiguration gemessene Bijvoet-Paare

F/F(th) = F(h,k,l)/F(h,k,l) berechnete Strukturamplitude. F/F(ex) = F(h,k,l)/F(h,k,l) beobachtete Strukturamplitude. sgm(ex) = Standardabweichung von F/F(ex).Hinweis + für eingegebene relative Konfiguration. Hinweis - für Enantiomer der eingegebenen Struktur.

h	k	l	F/F(th)	F/F(ex)	sgm(ex)	Hinw.	F_{beob} .
1	0	5	1,198	0,878	0,004	—	52,3
2	1	5	0,995	1,004	0,001	—	247,0
7	12	7	1,120	0,911	0,003	_	74,9
6	11	7	0,860	1,150	0,017		38,4
4	17	7	1,164	0,897	0,007	—	49,1
5	16	7	0,941	1,056	0,009	_	63,3
4	18	8	0,880	1,105	0,015		45,8
4	17	7	1,164	0,903	0,006	-	49,1
2	2	4	1,145	0,891	0,002	_	51,4
1	1	4	0,962	1,034	0,001	_	119,2
3	14	3	1,079	0,936	0,009		52,9
2	14	2	0,839	1,267	0,060	_	51,5
2	4	2	0,904	1,071	0,003		83,6
3	3	2	1,023	0,968	0,002		252,3
3	17	6	0,927	1,066	0,005		76,7
4	17	7	1,164	0,910	0,006		49,1
5	1	4	0,853	1,091	0,011	—	40,1
4	2	4	1,073	0,931	0,002	—	125,7
6	11	3	1,189	0,864	0,005		46,5
5	12	3	0,986	1,011	0,002		214,0
10	5	5	1,178	0,863	0,010		40,6
9	6	5	0,977	1,020	0,002	_	136,1
13	6	7	0,859	1,097	0,006		49,9
12	5	7	1,010	0,989	0,001		180,9
10	6	4	0,926	1,084	0,003	_	131,9
10	5	5	1,178	0.877	0.009		40.6

Atome entlang der polaren Achse in negativer z-Richtung betrug 0,023 Å relativ zu den N- und C-Atomen. Da jeweils vier Co-N Bindungslängen über ein Co-Atom korreliert sind, wurden durch die Verschiebung der vier Co-Atome alle 16 Co-N Abstände systematisch verändert. Die grössten Änderungen traten dabei bei Co-N Bindungen auf, wenn der Co-N Vektor eine grosse z-Komponente besass.

Fig. 4. Raumgruppe I4₁ (in der Darstellung der International Tables for X-ray Crystallography, 1952), — asymmetrische Einheit, --- Bindungsschraube mit Ganghöhe 3c.

Die mittlere Änderung der Co-N Abstände betrug 0,012 Å. Der *R*-Wert verbesserte sich nach einigen Verfeinerungszyklen und konvergierte gegen R = 0,035.

Die bei Ende der Verfeinerung aus der Kleinste-Quadrate Rechnung erhaltenen Schätzwerte für die Ortskoordinaten und deren Standardabweichung sind in Tabelle 3, die anisotropen Temperaturkoeffizienten sind in Tabelle 4, jeweils für alle Co-, N- und C-Atome, zusammengefasst. Tabelle 5 gibt die vor dem letzten Verfeinerungszyklus berechneten Ortskoordinaten der Wasserstoffatome an. Schätzwerte für die Bindungslängen und Bindungswinkel mit Standardabweichungen sind in Tabellen 6 und 7 erfasst. Die beobachteten, absorptionskorrigierten ($|F_o|$) und berechneten, dispersionskorrigierten Strukturamplituden ($|F_{CDP}|$) sind in Tabelle 8 gelistet.

Fig. 3. Stereobild der Elementarzelle; Blickrichtung parallel zur z-Achse auf den Schwerpunkt der Zelle.

Tabelle 3.	Schätzwerte f	ür die Ortsko	ordinaten und			Tabe	elle 4 (F	Fort.)		
deren Stand	ardabweichung mentarze	gen in Brucht Allenkanten	eilen der Ele-		B_{11}	<i>B</i> ₂₂	B ₃₃	<i>B</i> ₁₂	<i>B</i> ₁₃	B ₂₃
	memu 20	memanien		N(11)	3,41	3,97	3,50	-0,25	-0,04	1,12
Die Standard	abweichungen (σ) sind in Klamm	ern in Einheiten	C(12)	3,53	5,01	3,61	-0,37	-0,49	1,90
	der letzten St	elle angegeben.		N(13)	4,46	3,40	2,95	0,07	-0,49	0.84
				C(14)	4,55	3.87	3.88	-0.57	-1.31	0.16
	x	У	Z	C(15)	4,16	3.54	4.59	-0.89	-0.82	0.93
Co(1)	0.58437 (9)	0.79906 (10)	0.33728 (23)	- (/	.,	- ,	.,	•,••	-,	0,10
Co(2)	0.59428 (9)	0.64999 (9)	0.69953 (20)	N(21)	4 75	3 86	3 29	0.06	-1 27	1 22
$C_0(3)$	0.34194(9)	0 59921 (9)	0 59824	C(22)	4 08	4 47	3 18	0.48	-0.62	0,20
$C_0(4)$	0 39593 (10)	0,55721(9)	0,35024 0,15044 (22)	N(23)	5 65	3 10	3,64	0,40	1.52	0,20
00(1)	0,57575 (10)	0,05107 ())	0,13744 (22)	C(24)	12 16	3,17	1 32	2 63	-3.20	1 20
N(11)	0,6171 (5)	0,7718 (6)	0,4694 (11)	C(24)	12,10	1 10	5.02	2,05	-3,29	- 1,29
C(12)	0,5878 (7)	0.7353 (8)	0.5290 (13)	C(23)	12,70	4,40	5,02	5,50	- 3,02	-0,11
N(13)	0.6173 (6)	0.7156 (5)	0.6095 (10)	N(21)	2 27	2.00	2 77	0.13	0.00	0.54
C(14)	0.6704(7)	0.7428(7)	0.6020(14)	$\Gamma(31)$	3,37	3,90	3,77	0,12	0,09	0,54
$\hat{\mathbf{C}}(15)$	0,6702,(7)	0,7763(7)	0,5168(14)	C(32)	4,33	3,8/	3,47	0,15	0,44	0,69
0(10)	0,0102 (1)	0,1105 (1)	0,5100 (14)	N(33)	3,48	4,18	3,33	-0,19	-0,14	-0,35
N(21)	0.6253 (6)	0.6634 (6)	0.8403 (11)	C(34)	4,30	5,65	4,28	-0,28	0,83	-0,56
C(22)	0.6610(7)	0.6281(7)	0.8906 (13)	C(35)	4,85	4,40	4,87	-0,95	0,87	0,60
N(23)	0.6703 (7)	0.6420 (6)	0.9883(11)							
C(24)	0.6373(12)	0.6901(8)	1,0022 (16)	N(41)	4,35	4,04	3,55	-0,32	0,71	0,21
C(25)	0,0070(12)	0,0001(0)	0.0126(17)	C(42)	4,80	3,33	3,30	-0,12	0,76	-0,10
0(23)	0,0077(12)	0,7034 (9)	0,9120 (17)	N(43)	4,39	3,73	4,53	0,13	1,44	0,11
N(31)	0.6296 (6)	0.5795 (6)	0.6334(11)	C(44)	7,22	5,25	8,50	-1.26	3.78	-2.73
C(32)	0.6271(7)	0.5231(7)	0,6590(14)	C(45)	7,66	9,49	7,99	-4.43	4.82	-2.25
N(33)	0,6553(5)	0,3231(7) 0,4874(6)	0,0000(14) 0,5963(12)	. ,		,	.,	.,	.,	_,
C(34)	0,6770(8)	0,1074(0)	0,5705(12) 0,5217(15)	N(51)	3.69	4.59	2.99	0.45	0.45	0.87
C(35)	0.6618(8)	0,5242(9)	0,5217(15)	C(52)	3.56	4.65	3,35	-0.19	0 24	0.49
C(33)	0,0010 (0)	0,5777 (0)	0,5444 (10)	N(53)	3.81	4.00	2 88	-0.04	-0.08	0,37
N(41)	0.3932 (6)	0.5692 (6)	0.1126 (11)	C(54)	3.41	7 43	3,64	0,96	-0.57	1 04
C(42)	0.3554(7)	0.5281(7)	0.1425(13)	C(55)	3 04	7,45	1 13	0,90	0.61	0.60
N(43)	0 3592 (6)	0,3281(1)	0.0929(12)	0(55)	5,04	7,01	7,75	0,02	0,01	0,09
C(44)	0,3072(0)	0,4705(0)	0,0227(12)	N(61)	1 65	2 7 2	2 62	0.47	0.12	0.01
C(45)	0.4236(11)	0,4000(7)	0,0202(21)	C(62)	4,05	3,72	2,02	-0,47	-0.12	0,01
C(45)	0,4250 (11)	0,5405 (12)	0,0348 (21)	N(62)	4,24	2,05	3,37	-0,00	-0,17	0,73
N(51)	0.3320 (6)	0.6278 (6)	0.4540 (11)	$\Gamma(03)$	4,10	3,23	2,07	-0,15	-0,25	0,57
C(52)	0.3721(7)	0,6395(7)	0.3812(13)	C(64)	3,93	3,82	4,00	0,28	-0,66	0,65
N(53)	0,3496 (6)	0,6505 (6)	0,3012(13) 0,2807(10)	C(65)	3,93	4,10	4,50	-0,76	0,26	0,32
C(54)	0.2903(8)	0,6355(0)	0,2077(10) 0.3033(14)		<u> </u>					
C(55)	0,22000(0)	0,0433(1)	0,3033(14)	N(7)	3,45	3,95	3,41	0,25	0,42	0,00
C(33)	0,2000 (7)	0,0324 (10)	0,4030 (10)	C(72)	3,81	5,52	3,29	-0,47	0,58	-0,43
N(61)	0.3692 (6)	0.7033 (6)	0.0483(10)	N(73)	3,60	4,19	3,21	- 0,09	-0,01	-0,12
C(62)	0.3991 (7)	0.7476 (7)	0.0041(14)	C(74)	4,57	6,21	3,60	0,01	-0,24	-1,11
N(63)	0.3719 (6)	0.7731(5)	-0.0722(10)	C(75)	4,51	6,58	3,89	0,70	0,82	-0,49
C(64)	0.3200 (7)	0.7441(7)	-0.0811(14)							
C(65)	0.3182(7)	0,7024(7)	-0.0070(15)	N(81)	3,53	4,99	4,67	-0,73	-0,31	0,71
0(00)	0,5102 (7)	0,702+(7)	0,0070 (15)	C(82)	4,14	4,77	4,66	-0,12	-1,10	0,15
N(71)	0,4145 (6)	0.6239 (6)	0.6701 (11)	N(83)	4,11	4,15	4,05	-0,63	-0,06	0,06
C(72)	0.4693 (7)	0.6260 (8)	0.6392 (14)	C(84)	4,73	4,93	10,33	-0.19	-0.15	-0.16
N(73)	0.5077 (6)	0.6417(6)	0.7108(11)	C(85)	3,78	6,24	11,36	0,25	-0.81	0.08
C(74)	0.4745 (8)	0.6518 (9)	0.7949(14)		-	·			,	, .
$\mathbf{C}(75)$	0.4178(8)	0,6411(9)	0,7710(16)							
-(, -)		3,0411 (2)	0,7710 (10)							
N(81)	0,5445 (6)	0,7298 (6)	0,2780 (12)	Taballa	5 V.a.	dama 1	atatan	Vanfain -		his h-
C(82)	0,4925 (8)	0,7267 (8)	0,2366 (15)	i abene	J. vor		eizien .	r erjeinel	ungszyk	ius de-
N(83)	0,4756 (6)	0,6757 (6)	0,2015 (12)	rech	nete Orts	Koordin	aten de	r Wassei	rstoff-At	ome
C(84)	0,5209 (9)	0.6420 (9)	0.2290 (23)						_	
C(85)	0,5622 (9)	0,6733 (10)	0.2755 (24)	Der Ten	nperaturfa	ktor ist c	lefiniert i	nach: $T =$	exp [– 0,	$25BH^{2}$].
		,()	·,_··· (_·)							

Tabelle 4. Schätzwerte für die anisotropen Temperaturkoeffizienten

Der Temperaturfaktor (T) ist definiert nach:	
$T = \exp\left[-0.25(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2}\right]$	

$+2B_{12}hka^*b^*+2B_{13}hla^*c^*+2B_{23}klb^*c^*)$].

	B_{11}	B_{22}	B ₃₃	B_{12}	B_{13}	B_{23}
Co(1)	2,96	4,49	3,01	-0,31	-0.07	1,51
Co(2)	3,66	3,67	2,71	0,01	-0,53	0,90
Co(3)	3,14	4,14	2,91	0,10	0,57	0,51
Co(4)	4,20	3,52	2,63	-0,66	-0,01	0,66

	x	У	Z	В
H(12)	0,545	0,723	0,514	5,0
H(14)	0,705	0,738	0,653	5,0
H(15)	0,705	0,801	0,491	5,0
H(22)	0,680	0,592	0,856	5,0
H(24)	0,634	0,713	1,070	5,0
H(25)	0,582	0,738	0,901	5,0
H(32)	0,605	0,508	0,723	5,0
H(34)	0,701	0,511	0,458	5,0
H(35)	0,673	0,616	0,502	5,0
H(42)	0,325	0,535	0,201	5,0
H(44)	0,420	0,455	-0,024	5,0
H(45)	0,457	0,559	-0,010	5,0
H(52)	0,417	0,640	0,396	5,0
H(54)	0,259	0,651	0,247	5,0

Tabelle 5 (Fort.)

	x	У	z	В
H(55)	0,239	0,627	0,436	5.0
H(62)	0,440	0,760	0,029	5,0
H(64)	0,288	0,752	-0,135	5,0
H(65)	0,284	0,674	0,006	5,0
H(72)	0,482	0,616	0,564	5,0
H(74)	0,490	0,665	0,866	5,0
H(75)	0,383	0,645	0,821	5,0
H(82)	0,466	0,763	0,232	5,0
H(84)	0,524	0,598	0,216	5,0
H(85)	0,601	0,657	0,305	5,0

Tabelle 6. Schätzwerte für die Bindungslängen (Å) und deren Standardabweichungen

Die Standardabweichungen (σ) sind in Klammern in Einheiten der letzten Stelle angegeben.

				C(62) - N(63) - C(64)
Abstände inner	halb der Imida	zolringe		C(72) - N(73) - C(74)
C(12) = N(13)	1 322 (21)	N(11) = C(15)	1 366 (21)	C(82) - N(83) - C(84)
C(22) - N(23)	1,325(22)	N(21) - C(25)	1,300 (21)	
C(32) = N(33)	1,319(22)	N(31) - C(35)	1,339(20) 1,370(24)	N(13)-C(14)-C(15)
C(42) = N(43)	1,313(21)	N(41) = C(33)	1,370(24)	N(23)-C(24)-C(25)
C(52) = N(53)	1,313(21) 1,217(21)	N(41) - C(43) N(51) - C(55)	1,390 (30)	N(33) - C(34) - C(35)
C(52) = N(55) C(62) = N(62)	1,317(21)	N(31) - C(33)	1,305 (22)	N(43) - C(44) - C(45)
C(02) = N(03) C(72) = N(72)	1,306 (21)	N(01) - C(05)	1,370 (22)	N(53) - C(54) - C(55)
C(72) = N(73)	1,327(22)	N(7) - C(75)	1,370 (25)	N(63) - C(64) - C(65)
C(82) - N(83)	1,310 (23)	N(81) - C(85)	1,355 (27)	N(73) - C(74) - C(75)
				N(83) - C(84) - C(85)
C(12) - N(11)	1,320 (21)	C(14) - C(15)	1,345 (25)	1(05) - C(04) - C(05)
C(22) - N(21)	1,321 (22)	C(24) - C(25)	1,358 (33)	
C(32) - N(31)	1,334 (21)	C(34) - C(35)	1,348 (27)	N(11) - C(15) - C(14)
C(42) - N(41)	1,335 (21)	C(44) - C(45)	1.318 (35)	N(21)-C(25)-C(24)
C(52) - N(51)	1.344 (21)	C(54) - C(55)	1.349 (27)	N(31)-C(35)-C(34)
C(62) - N(61)	1.350 (21)	C(64) - C(65)	1,355 (24)	N(41)-C(45)-C(44)
C(72) - N(71)	1.317(21)	C(74) - C(75)	1 356 (27)	N(51)-C(55)-C(54)
C(82) - N(81)	1 307 (23)	C(84) = C(85)	1 320 (27)	N(61)-C(65)-C(64)
-(1,507 (25)	C(04) $C(05)$	1,527 (55)	N(71)-C(75)-C(74)
N(12) C(14)	1 2(9 (21)			N(81)-C(85)-C(84)
N(13) - C(14)	1,308 (21)			
N(23) - C(24)	1,346 (26)			C(12) = N(11) = C(15)
N(33) - C(34)	1,375 (24)			C(22) = N(21) - C(25)
N(43) - C(44)	1,348 (29)			C(22) = N(21) - C(23) C(32) = N(31) - C(35)
N(53) - C(54)	1,371 (22)			C(32) = N(31) = C(33) C(42) = N(41) = C(45)
N(63) - C(64)	1,365 (20)			C(42) = IN(41) - C(43) C(52) = N(51) - C(55)
N(73)-C(74)	1,348 (23)			C(52) = N(51) - C(53)
N(83)–C(84)	1,341 (25)			C(02) = N(01) - C(03)
				C(72) = N(71) - C(75)
Abstände zwisch	nen Co und N-	Atomen		C(82) = N(81) - C(85)
N(13)-Co(2)	1.973 (13)	N(53) = Co(4)	1 996 (13)	Winkel ausserhalb der Imidazolringe
$N(11)-C_0(1)$	1.972 (14)	N(51) = Co(3)	1,996(13)	winker aussernato der mindazon nige
N(23)-Co(1)	1,969 (14)	N(63) = Co(3)	1,995(12)	C(12) - N(13) - Co(2)
N(21)-Co(2)	1 983 (14)	N(61) - Co(4)	1 970 (12)	C(22) - N(23) - Co(1)
N(33) - Co(3)	1 982 (13)	N(73) - Co(2)	1,006 (13)	C(32) = N(33) = Co(3)
N(31)-Co(2)	1,906 (13)	N(71) = Co(2)	1,990(13)	C(42) = N(43) = Co(1)
N(43) - Co(1)	1,000(13)	N(71) = CO(3) N(82) = Co(4)	1,703(13)	C(52) = N(53) = Co(4)
N(41) - Co(1)	1,007(13)	N(83) - CO(4)	1,904(14)	C(52) = N(53) = Co(4) C(52) = N(53) = Co(3)
1(41) = CO(4)	1,970 (13)	N(01) - CO(1)	1,984 (15)	C(02) = N(03) - C0(3) C(72) = N(72) - Co(3)
				C(72) = N(73) - CO(2) C(82) = N(82) - Co(4)
Abstände zwisch verbunden sind	nen Co-Atome	n, die über einen I	midazolring	C(02) = IN(03) - CO(4)
$C_0(1) = C_0(2)$	5 813 (4)	$C_{0}(2) = C_{0}(2)$	6 032 (2)	C(14) - N(13) - Co(2)
$C_0(1) = C_0(2)$	5 701 (4)	$C_0(2) = C_0(3)$	(0,032(3))	C(24) - N(23) - Co(1)
$C_0(1) = C_0(2)S$	5,171(4) 5 0/7 (2)	$C_{0}(2) - C_{0}(3)S$	0,029(3)	C(34) - N(33) - Co(3)
$C_0(1) = C_0(4)$	5 000 (2)	$C_0(3) = C_0(4)$	5,948 (3)	C(44) - N(43) - Co(1)
CO(1) - CO(4)S	3,898 (3)	CO(3) - CO(4)S	5,949 (3)	C(54) - N(53) - Co(4)

Die mit S gekennzeichneten Co-Atome sind durch Symmetrie erzeugt.

Tabelle 7. Schätzwerte für die Bindungswinkel (°) und deren Standardabweichungen

Die Standardabweichungen (σ) sind in Klammern in Einheiten der letzten Stelle angegeben.

114,9 (14)

115,3 (15) 115,1 (15)

115,2 (15)

113,9 (14)

114,6 (14)

115,2 (16)

117,3 (16)

103,9 (13) 103,5 (15)

103,4 (14)

104,0 (15)

104,7 (14)

105,1 (13)

103,9 (14) 101,0 (15)

Winkel innerhalb der Imidazolringe

N(13)-C(12)-N(11)

N(23) - C(22) - N(21)

N(33)-C(32)-N(31)N(43) - C(42) - N(41)

N(53)-C(52)-N(51)

N(63)-C(62)-N(61)

N(73)-C(72)-N(71)

N(83)-C(82)-N(81)

 $\begin{array}{c} C(12) - N(13) - C(14) \\ C(22) - N(23) - C(24) \\ C(32) - N(33) - C(34) \end{array}$

C(42) - N(43) - C(44)

C(52)-N(53)-C(54)

$\begin{array}{l} N(13)-C(14)-C(15)\\ N(23)-C(24)-C(25)\\ N(33)-C(34)-C(35)\\ N(43)-C(44)-C(45)\\ N(53)-C(54)-C(55)\\ N(63)-C(64)-C(65)\\ N(73)-C(74)-C(75)\\ N(83)-C(84)-C(85) \end{array}$	108,3 (15) 109,3 (18) 109,2 (17) 109,8 (21) 108,3 (15) 108,0 (14) 108,8 (16) 111,2 (19)
N(11)-C(15)-C(14) N(21)-C(25)-C(24) N(31)-C(35)-C(34) N(41)-C(45)-C(44) N(51)-C(55)-C(54) N(61)-C(65)-C(64) N(71)-C(75)-C(74) N(81)-C(85)-C(84)	109,3 (14) 108,6 (19) 108,7 (16) 109,3 (22) 109,3 (15) 109,6 (14) 108,8 (16) 108,1 (19)
$\begin{array}{l} C(12)-N(11)-C(15)\\ C(22)-N(21)-C(25)\\ C(32)-N(31)-C(35)\\ C(42)-N(41)-C(45)\\ C(52)-N(51)-C(55)\\ C(62)-N(61)-C(65)\\ C(72)-N(71)-C(75)\\ C(82)-N(81)-C(85) \end{array}$	103,6 (14) 103,4 (16) 103,5 (14) 101,7 (16) 103,7 (14) 102,7 (13) 103,2 (14) 102,2 (16)
erhalb der Imidazolringe	:
$\begin{array}{l} C(12) - N(13) - Co(2) \\ C(22) - N(23) - Co(1) \\ C(32) - N(33) - Co(3) \\ C(42) - N(43) - Co(1) \\ C(52) - N(53) - Co(4) \\ C(62) - N(63) - Co(3) \\ C(72) - N(73) - Co(2) \\ C(82) - N(83) - Co(4) \end{array}$	126,3 (11) 121,4 (11) 128,8 (12) 126,7 (12) 123,9 (11) 125,9 (11) 129,1 (12) 128,3 (12)
C(14)-N(13)-Co(2) C(24)-N(23)-Co(1) C(34)-N(33)-Co(3) C(44)-N(43)-Co(1) C(54)-N(53)-Co(4) C(64)-N(63)-Co(3) C(74)-N(73)-Co(2) C(84)-N(83)-Co(4)	128,7 (11) 131,2 (13) 127,5 (12) 126,9 (14) 129,4 (11) 128,9 (11) 127,0 (12) 128,3 (13)

Tabelle 7 (Fort.)

$\begin{array}{l} C(12)-N(11)-Co(1)\\ C(22)-N(21)-Co(2)\\ C(32)-N(31)-Co(2)\\ C(42)-N(41)-Co(4)\\ C(52)-N(51)-Co(3)\\ C(62)-N(61)-Co(4)\\ C(72)N(61)-Co(4)\\ C(72)N(61)-Co(4)\\ \end{array}$	121,2 (11) 125,6 (11) 131,1 (12) 126,8 (11) 130,4 (11) 127,6 (11)
C(72) = N(71) = Co(3)	131,6 (12)
C(82) - N(81) - Co(1)	128,3 (12)
C(15)-N(11)-Co(1)	134,9 (11)
C(25) - N(21) - Co(2)	130.3 (14)
C(35) - N(31) - Co(2)	125,3 (11)
C(45) - N(41) - Co(4)	131.1 (14)
C(55) - N(51) - Co(3)	125,5 (12)
C(65) - N(61) - Co(4)	129.7 (11)
C(75) - N(71) - Co(3)	125,2 (11)
C(85) - N(81) - Co(1)	129,4 (13)

Winkel an den Kobaltatomen

$N(11) = C_0(1) = N(81)$	105 0 (6)
N(11) = Co(1) = N(01)	105,0 (0)
N(11) = CO(1) = N(43)	117,4 (6)
N(11) - Co(1) - N(23)	115,2 (6)
N(81)-Co(1)-N(43)	103,7 (6)
N(81)-Co(1)-N(23)	109.8 (6)
N(43)-Co(1)-N(23)	105,1 (6)
N(13)-Co(2)-N(21)	109.5 (5)
N(13) - Co(2) - N(31)	104.6 (6)
N(13) - Co(2) - N(73)	1124 (6)
$N(21) = C_0(2) = N(31)$	112,4 (0)
N(21) = Co(2) = N(31)	107.6 (6)
N(21) = Co(2) = N(73)	110 9 (5)
$\pi(31) = CO(2) = \pi(73)$	110,8 (5)
N(51)-Co(3)-N(71)	116,3 (5)
N(51)-Co(3)-N(33)	108.6 (6)
N(51) - Co(3) - N(63)	106.7 (5)
N(71) - Co(3) - N(33)	105 2 (5)
N(71) - Co(3) - N(63)	108.8(5)
N(33) - Co(3) - N(63)	111 2 (5)
1(55) 20(5)-1(05)	111,5 (5)
N(41)-Co(4)-N(53)	103,8 (6)
N(41)-Co(4)-N(61)	109,9 (6)
N(41)-Co(4)-N(83)	112.6 (6)
N(53)-Co(4)-N(61)	117.4 (5)
N(53) - Co(4) - N(83)	104.9 (6)
N(61) = Co(4) = N(83)	108 3 (6)
	100,5 (0)

Beschreibung und Diskussion der Struktur

Die asymmetrische Einheit von Diimidazolylkobalt ist gut aus dem Stereobild in Fig. 1 zu erkennen. Da sie acht unkorrelierte Imidazolringe enthält, konnten Schätzwerte für die Erwartungswerte $\overline{l} = \frac{1}{8} \sum_{\nu=1}^{8} l_{\nu}$ und für die Streuung $\overline{\sigma}^2 = \frac{1}{8^2} \sum_{\nu=1}^{8} \sigma_{\nu}^2$ der Bindungslängen und Bindungswinkel sowie Schätzwerte für die Streuung der Schätzwerte der Bindungslängen und Bindungswinkel $s^2 = \frac{1}{8-1} \sum_{\nu=1}^{8} (l_{\nu} - \overline{l})^2$ bestimmt werden. Die Ergebnisse sind in Tabelle 9 zusammengefasst. Mit dem χ^2 -Test (Heinhold & Gaede, 1964) wurde ermittelt, ob die Bindungslängen und Bindungswinkel der acht Imidazolringe innerhalb ihrer Fehlergrenzen gleich sind. Getestet wurde die Hypothese $\overline{\sigma}^2 = s^2$. Sie ist mit einer Sicherheitswahrscheinlichkeit von $(P-Q)^{9}$ abzulehnen, wenn s^2 ausserhalb des Vertrauensbereiches:

$$\frac{\chi^2_{n-1;Q\%} \cdot \bar{\sigma}^2}{n-1} < s^2 < \frac{\chi^2_{n-1;P\%} \cdot \bar{\sigma}^2}{n-1}$$

liegt. $\chi^2_{n-1;P\%}$ sind die P% Fraktilen der χ^2 -Verteilung vom Freiheitsgrad n-1.

Bei Diimidazolylkobalt liegen die s^2 Werte der Bindungslängen C(2)–N(3), N(1)–C(5) und C(4)–C(5) und der Bindungswinkel N(1)–C(5)–C(4) und C(2)– N(1)–C(5) innerhalb eines (95–5)%=90%, der Bindungslänge N(3)–C(4) innerhalb eines (99–1)%= 98% und die Bindungslänge C(2)–N(1) und die Bindungswinkel N(1)–C(2)–N(3) und N(3)–C(4)–C(5) innerhalb eines (99,9–0,1)%=99,8% Vertrauensbereiches. s^2 des Bindungswinkels C(2)–N(3)–C(4) liegt ausserhalb der 99,9% Vertrauensgrenzen.

Die arithmetischen Mittel \overline{l} bzw. $\overline{\omega}$ und die mittleren quadratischen Abweichungen *s* aller in der asymmetrischen Einheit befindlichen sich chemisch entsprechenden Bindungslängen und Bindungswinkel sind in Tabelle 10 zusammengefasst.

Zur Untersuchung der Planarität der Imidazolringe wurden die besten Ebenen durch die Ringe berechnet (Stewart & High, 1963). Die Schätzwerte für die Winkel zwischen den besten Ebenen verschiedener Ringe sind in Tabelle 11 und Schätzwerte für die kürzesten Abstände der jeweils fünf zu jedem Ring gehörenden Atome und der jeweils zwei mit jedem Ring verbundenen Co-Atome von der besten Ebene des Rings sind in Tabelle 12 erfasst. Mit dem χ^2 -Test wurde getestet, ob die zu einem Imidazolring gehörenden Atome innerhalb ihrer Fehlergrenzen auf der besten Ebene lagen, d.h. ob die Ringe eben waren. Es ergab sich, dass die Imidazolringe mit einer Sicherheitswahrscheinlichkeit von 95% sämtlich signifikant planar sind.

Die mittleren thermischen Abweichungen der Atomlagen von ihren Schätzwerten wurden berechnet (Johnson, 1965). Eine Veranschaulichung der Ergebnisse liefert Fig. 2.

Der Auf bau der Kristallstruktur ist aus dem Stereobild Fig. 3 ersichtlich. Die Raumgruppe enthält vier vierzählige Schraubungsachsen mit paarweise entgegengesetztem Windungssinn in der Mitte je eines Quadranten (Fig. 4). Die vier unabhängigen Moleküle (vgl. in Fig. 4 die vier Co Lagen) sind so verteilt, dass je zwei Moleküle zwei benachbarte Quadranten besetzen und in je zwei übereinanderliegende vierzählige Schrauben im gleichen Quadranten sowie in symmetrisch äquivalente Schrauben in den gegenüberliegenden Quadranten vervielfältigt werden. Es entstehen so vier parallele Doppelschrauben entlang c (Ganghöhe c). Verbindet man aber Co und Imidazol durch kürzeste Abstände (Bindungen), so kann man die Doppelschraube durch eine gegenläufige Einfachschraube mit Ganghöhe 3c ersetzen, wobei die beiden unabhängigen Moleküle ein 'Doppelmolekül' bilden, dessen Imidazolringe einmal die Verbingung in Schraubenrichtung und zum

MANFRED STURM, FRANZ BRANDL, DENNIS ENGEL UND WALTER HOPPE 2375

Tabelle 8. Gemessene, absorptionskorrigierte und berechnete, dispersionskorrigierte Strukturamplituden Die Spalten enthalten h, $|F_o| \times 10$ und $|F_{CDP}| \times 10$. Unbeobachtete Reflexe sind durch einen Stern gekennzeichnet.

5 135 137 1 1227 100 2 1227 100 3 1227 100 3 1227 100 3 1227 100 3 1227 100 3 1227 100 3 1227 100 3 1227 100 3 137 357 6 10 266 203 10 266 203 11 120 200 200 20 200 200 200 12 120 200 200 12 130 310 310 13 320 310 310 14 120 200 200 200 13 320 310 310 310 14 700 710 310 310 15 310 310 310
n. z.a. 2 ewe 4.51 1 126.6 150.6 1 126.7 150.6 1 100.7 100.7
16 3.46 4.51 16 3.46 4.51 20 3.17 3.53 21 3.16 3.17 23 3.17 3.53 24 1.16 3.17 3.17 3.53 3.17 3.17 3.57 4.22 3.17 3.57 4.22 3.17 3.57 4.22 3.17 3.57 4.22 11 1.66 3.57 11 6.6 2.57 12 2.17.21 3.17.21 13 4.66 3.12 2.12 2.12.21 3.12.21 3.12 2.12.21 3.12.21 3.12 3.12.21 3.12.21 14 4.84 8.64.21 15 4.84.16 8.84.16 16 2.24.71 1.16.75 17 7.05.75 2.27.21 18 8.84.17 2.20.21 19 18.66.74 4.
4 227 238 8 227 238 8 227 238 8 227 238 8 227 238 9 237 238 9 237 238 9 237 238 9 237 238 9 237 238 9 237 238 9 237 238 9 237 238 9 237 238 9 237 238 9 238 237 9 238 237 9 238 237 9 238 238 9 238 238 9 238 238 9 238 238 9 238 238 9 238 238 9 238 238 9 238 238 9 238 238 9
10 14 2 2 1 11 11 12 11 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
$ \begin{array}{c} \mu_1, 1, 2 \\ 2 \\ 1, 11 \\ 11 \\ 12 \\ 12 \\ 12 $
2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 3) 2) 2) 3) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2) 4) 2) 2)
16 36.2 2.4 16 36.2 2.4 17 2.12 2.5 18 2.12 2.5 19 2.12 2.5 11 2.12 2.5 11 2.12 2.5 11 2.12 2.5 11 2.12 2.5 11 2.15 2.25 11 2.15 2.25 11 2.15 3.5 12 2.5 5.5 13 2.5 5.5 14 2.5 5.5 15 2.5 5.5 12 2.5 5.5 12 2.5 5.5 12 2.5 5.5 12 2.5 5.5 12 2.5 5.5 12 2.5 2.5 12 2.5 2.7 12 2.5 2.7 12 2.5 2.7 <
a 24. 126.5 a 126.5 126.5 a 4.27.5 125.5 a 4.27.5 125.5 a 127.5 127.5 a 2.27.5 127.5 a 2.27.5 127.5 b 2.27.5 127.5 a 2.27.5 127.5 a 2.27.5 127.5 b 2.27.5 127.5 a 2.27.5 127.5 a 2.27.5 127.5 b 2.27.5 127.5 a 2.27.5 127.5 a 2.27.5 127.5 b 2.27.5 127.5 c 111.5 127.5 a 2.27.5 128.5
- -
m. 3, a a 7620 a 7620 a 7620 a 7620 a 7620 a 7620 b 2 200 b 2 2

¥.23.4	H, 13, 5	H. 1. 5	1 1513 1671	12 395 373	1 355 150	3 842 PP4	4,0,8	13 356 356	1 3 464 461	19 178 15	1 1 14 107. 44
H, 29, 3	2 587 684 4 1202 1195 6 957 928 9 1122 1117	2 1789 1972 4 2293 2157 6 147] 1497 3 216] 2347	R, 6, 5 2 1578 1573	16 113 233 18 274 269 4,17,6	14 271 302 14 475 461 H, 14, 7	H, 5, 7 2 384 365	2 1314 1115 6 253 226 6 1726 1738 8 1126 1119	9 328 343 7 403 386 5 101+ 165	5 870 #37 3 521 527 1 636 #31	17 943 82 15 103 36 13 259 296 11 276 28(i 16 179 178 3 18 238 249 5 8,9,1-
* 231 257 6 248 243 8 115+ 112 12 383 374	12 950 835 12 693 659 16 864 947 18 520 472	12 779 817 14 743 759 16 331 317 19 627 633	6 1232 1240 6 112 196 9 054 910 10 241 255 12 548 551	17 165 411 15 177 369 13 312 278	17 114+ 134 15 4A9 472 13 523 554	4 359 336 5 216 246 9 705 693 15 1340 1340	1 323 338 12 342 343 14 65, 622 17 627 639	1 697 721 H, 16, 8	H, 13, 9 2 1040 1081 4 504 577	7 724 712 5 1598 1579 3 848 795	17 699 678 14 360 380 13 592 602
8,25,4 7 1150 126	2' 1096 74 22 241 257 H,12,5	20 918 916 22 565 552 28 578 576	10 845 622 16 593 592 19 876 821 20 618 558	• 319 30C • 131 350 • 101• 105 • 101• 105 • 101• 723	7 280 204 9 A00 66A 7 211 174 5 A10 574 3 171 98	12 1737 173 14 403 445 14 1075 487 18 257 229 20 367 181	14 457 411 2' 578 582 22 274 258	2 174 189 0 549 529 6 1030 159 M 232 255	6 369 362 8 315 356 1' 463 465 12 624 631	H, 1, 0 2 1210 1232	9 424 430 7 889 506 5 700 678 3 1509 1531
3 299 257 3 288 310 1 543 528	21 254 204 13 453 447 17 472 181	H, 2, 5 25 340 340 23 110+ 40	22 464 638 24 116 120 H, 7, 6	1 543 531 H, 19,6	1 439 461 H, 15, 7	22 167 15n H.G.7	21 176+ 162 10 111+ 133 17 349 3	12 271 244 14 109+ 144 16 332 345	16 227 224 H,12,9	9 1451 1652 5 841 887 9 945 863 10 451 968	1 833 845 H, 10, 10
2 359 327 H, 25, 5	13 553 596 11 1253 1238 3 960 113 7 1929 1876	17 195 183 17 195 183 17 195 183 15 184 15 189 174 13 1047 1067	23 114. 78 21 807 810 19 156 120 17 697 698	2 717 725 4 178 157 5 1736 120 4 1736 43 17 297 320	2 986 952 4 388 357 6 158 157 6 193 113	23 287 244 21 562 545 19 846 540 17 181 144	15 283 265 13 363 371 11 441 430 9 498 493	H, 17, 9 15 431 413 13 225 263	1' 273 2',8 15 318 2°1 13 029 032 11 691 682	14 429 429 14 429 429 16 979 955 18 601 594 23 627 608	2 329 328 4 580 585 6 552 547 8 487 402
2 1710 85 8 215 177 6 178 172	5 958 935 3 1051 1049 1 523 986	11 9(* 878 9 1525 1520 7 379 348 5 582 575	15 104 107 13 184 147 11 794 782 9 973 988	12 550 524 14 366 356 16 276 257	12 633 637 14 371 374 16 591 566 18 351 328	13 217 2^6 13 217 2^6 11 344 388 4 1305 1404 7 904 93	7 520 62A 5 277 295 3 1218 1225 1 787 8^5	11 361 358 9 579 578 7 342 296 5 797 776	9 366 367 7 429 425 5 992 991 3 302 315	22 11a. 192 H.C.O	12 3A3 379 14 4A3 458 16 298 264 18 330 325
N,24,5 9 219 293 7 511 493	2 1894 147C 4 1586 1495 6 458 457	1 2'35 2165 H, 1, 5	7 884 882 5 1063 1090 3 519 509 1 1472 1477	H, 19, 6	H, 14, 7	5 1360 14/1 3 2900 2890 1 460 44/	H, 4, 8 2 1416 1417 4 1399 1358	1 1240 52 R.18,8	H,11,9 2 250 248	13 203 242 13 841 807 17 458 485 15 356 309 13 102 119	H, 11, 10 17 649 614
5 478 8C? 3 240 2C9 1 191 144	B 1581 1614 11 645 682 12 424 658 14 360 342	2 2357 2433 4 1105 1067 6 446 456 8 420 382	H, R, A 2 1043 1049 9 832 823	9 27C 292 7 196 364 5 493 497 3 377 38:	15 258 245 13 436 411 11 539 567 9 167 161	2 2122 212A 4 445 42' 6 1346 1344	A 719 775 A 1179 11AC 1' 360 35(12 1220 1223 14 392 398	2 369 399 4 432 417 5 443 452 8 269 271	4 418 397 6 398 385 9 25: 233 10 921 896	11 710 741 3 317 276 7 1000 1058 5 1162 1176	11 610 595 11 106+ 70 9 1067 1062 7 307 30+
2 845 463 4 646 638 6 273 203	18 272 291 20 1110 122 22 1120 90	12 598 637 14 2074 2038 16 623 607 19 737 734	6 773 774 8 1291 1299 10 1074 1063 12 1585 1584 14 198 179	H, 21, 6	7 250 214 5 544 591 3 994 22 1 598 683	8 1332 137P 10 177 195 12 994 929 14 445 43P	16 175 103 18 117 131 2' 5'7 477 22 432 404	12 437 426 14 324 297 H,19,8	14 4)1 409 16 391 371 19 116 165	1 710 724 1,0,1	5 585 575 3 354 355 1 893 879 8, 12, 15
# 555 640 10 309 303 #,22,5	H, 10, ° 23 1136 81 21 198 165 19 493 481	20 953 844 22 191 159 24 230 216	16 261 258 19 356 373 20 534 402 22 1136 127	4 322 286 6 895 895 9 211 272 1. 811 815	H, 13, 7 2 1261 1245 4 818 832	18 750 709 2° 289 262 22 372 36° 24 316 3°7	H, 7, P 21 522 471 19 434 804	13 522 535 11 171 129 9 819 802 7 390 363	P,1C,9 19 262 273 17 377 395	2 554 567 4 612 427 6 834 890 8 579 562 10 784 752	2 293 277 6 322 327 6 290 290
13 571 575 11 263 260 9 167 204 7 177 226	17 397 435 15 657 656 13 999 1004 11 384 349	25 114a 101 23 516 498 21 24° 240	N,9,6 23 256 257 21 271 255	14 113 129 H, 21,6	6 725 735 9 797 802 10 171 177 12 415 623 14 228 236	H,2,7 23 1140 15R	17 24" 794 15 207 167 13 25C 248 11 392 422	5 294 28 3 521 493 1 528 512	13 332 33r 11 646 645 9 712 749 7 627 633	12 30 3 305 14 251 234 16 110 179 18 289 295	B 591 618 1J 1050 51 12 885 868 14 206 213 16 814 802
5 1296 122 3 387 365 1 374 380 8,21,5	3 355 137 7 560 625 5 72C 725 3 1218 1210 1 855 12	13 366 376 17 363 343 15 629 630 13 1088 1101	19 347 367 17 475 464 15 438 456 13 891 898	13 113+ 135 11 364 374 9 362 342 7 493 438	1/ 104. 158 18 109. 102 2' 113. 48	19 32" 316 17 198 216 15 803 777 13 1016 994	7 297 298 5 1187 1192 3 395 397 1 1124 1342	H,2C,H 2 10Be R1 4 485 441 5 265 266	5 797 786 3 886 494 1 434 463	27 112+ 87 H, 1, 10	R, 13, 10 15 417 383
2 393 350 4 212 152 6 329 317	H, 9, 5 2 473 511	9 1574 1559 7 2083 2123 5 1014 1084 3 78, 45	9 817 451 7 538 556 5 138 186 3 1657 1618	3 158 187 1 211 162 H, 22, 4	H, 12, 7 21 113e 114 10 246 228 17 519 525	11 722 A45 4 1155 1124 7 834 81A 5 342 277 3 3823 1885	H, R, A 2 742" 2649	8 354 329 10 109, 97 H,21,8	2 10 14 1004 4 97. 97 5 958 964	17 1Ca 285 15 318 310 13 479 469 11 317 333	13 245 273 11 393 360 9 835 840 7 182 199 5 905 913
0 263 241 10 352 360 12 110e 99 14 929 376	4 1976 1926 5 1139 1111 8 529 543 17 1148 1173 12 1097 1087	1 495 450 H, *, 6	1 785 745 9,10,6	2 304 302 4 584 578 6 169 143	15 692 684 13 631 648 11 804 855 9 289 311	1 1152 1161 R. 1. 7	6 2*49 2*83 P 314 321 1* 41* 415 12 21(2*9	9 312 319 7 198 198 5 240 239 3 427 399	8 171 154 17 1024 1046 12 359 357 14 544 682 16 393 374	9 567 575 7 8°1 865 5 332 312 3 1366 1357	3 249 258 1 974 980 8, 14, 19
H,23,5 15 194 204 13 678 455	14 543 553 16 879 896 13 375 393 25 620 619	6 1778 778 6 1778 7762 9 496 520 10 2423 2440	4 1778 1776 6 1359 1371 8 769 745 10 298 279	10 142 332 H,21,6	5 644 654 3 95 110 1 819 802	2 1458 1690 4 2176 2192 4 1123 1124 8 756 760 10 1618 1604	14 11"7 1147 16 411 404 19 1174 1125 2" 48" 493	1 175 129 H.22,9	18 427 345 27 123. 163 8,8,9	H,2,10	2 1(4+ 134 4 671 673 6 388 377 8 258 288
9 267 240 7 536 519 5 326 767 3 628 620	22 10Re 63 24 386 379 M,8,5	12 796 770 14 1030 1054 15 176 213 19 1078 97 20 388 361	12 656 648 14 590 568 16 710 687 18 476 449 20 919 917	9 192 153 7 155 384 5 1594 127 3 335 361	H, 11, 7 2 344 3P1 4 1234 1293	12 1109 1047 18 578 59 16 962 923 18 873 481	H, 9, 8 21 1100 11 19 216 213	2 1144 156 8 275 273 6 610 625 H.23.8	19 321 311 17 366 378 15 635 607 13 186 196	4 97. 121 6 683 704 9 314 313 10 370 376	10 159 183 12 1060 87 19 368 375
1 543 552 R, 19, 5	23 264 211 21 287 296 19 551 582 17 155 176	22 785 754 24 171 56 H, 1, 6	22 378 369 H, 11, 5	4,24,6 2 1110 128	P 1a62 1486 1' 930 932 12 257 249 14 578 623	20 K43 K4 22 45A 421 24 319 3(.) 8.0.7	17 399 429 15 387 369 13 33 316 11 955 439	3 111+ 125 1 376 36R	11 550 504 9 500 534 7 666 637 5 417 410	10 622 610 16 5(8 493 18 265 262 20 419 921	13 517 511 11 881 658 9 566 704
4 103+ 108 6 451 497 8 429 534 10 441 440	13 429 447 11 1097 1110 9 250 251 7 1420 1415	25 449 455 23 356 368 21 530 517 13 158 165	21 360 303 19 178 258 17 565 545 15 334 327 13 375 349	4 1120 138 6 1150 130 8,25,6	16 690 668 19 110e 139 2' 585 567	23 223 217 21 695 877 19 995 983	* 782 739 5 976 124 3 9°5 908 1 635 661	1 218 202 H, 21,9	1 351 357 1 357 357 8,7,5	H, 3, 1- 19 249 232 17 201 217	7 391 399 5 282 246 3 406 596 1 588 583
12 507 503 14 241 245 16 110+ 70	5 327 300 3 1838 1833 1 545 576	17 252 221 15 794 797 13 117 167 11 742 944	11 640 649 9 498 472 7 1211 1213 5 375 402	1 113. 117 H,24,7	21 537 520 19 339 344 17 279 277	17 387 388 15 1134 1119 13 177 147 11 941 955 9 347 342	H, 10,8 2 213 210	2 616 492 4 273 244 6 493 455	2 498 503 4 741 748 6 941 925 8 661 666	15 736 736 13 792 794 31 176 991 9 977 856	H, 16, 10 2 320 324 4 875 865
17 376 36; 15 289 263 13 793 784	2 1746 1763 9 2481 2448 4 1701 1724	7 502 507 5 535 488 3 407 454 1 230 211	3 587 610 1 1406 1435 8,12,6	3 370 355 1 1130 142 H,23,7	15 444 438 13 244 235 11 753 765 9 1117 1149	5 1183 1259 3 969 042 1 698 695	A 4'3 404 A 730 720 10 341 373 12 593 452	H,2D,9 9 341 318 7 561 533	12 267 285 14 353 355 16 305 326 18 111+ 46	7 816 817 5 1071 1108 3 537 555 1 1170 1090	6 109+ 144 8 790 785 10 310+ 172 12 432 399
11 265 249 9 399 852 7 576 575 5 565 506	8 2623 2050 10 1394 1337 12 322 413 14 205 207	8,2,6 2 2451 2528	2 8C7 778 4 951 958 6 357 352 8 1332 1309	2 161 176 4 1144 152 6 256 263	5 1395 1438 3 1128 1187 1 1053 1102	R,C,P C 983 081 2 127 07 4 844 51	14 263 205 16 198 244 18 245 244 26 1136 6P	5 290 256 3 648 610 1 1110 153	20 317 295 8,6,9	H,4,10 2 245 265 4 629 634	H, 17, 10 11 288 284 9 359 334
1 1114 1116 B, 17, 5	13 614 611 21 651 436 22 738 731 24 285 289	6 1648 1674 9 1367 1337 1^ 278 238 12 475 463	10 521 554 12 895 890 14 549 534 16 499 501 19 228 244	8,22,7 9 113+ 198 7 113+ 110 5 330 306	H, 9, 7 2 437 431 4 237 229 6 873 853	6 103+ 100 8 442 458 10 829 813 12 826 804	H,11,8 19 398 376 17 258 255	2 222 275 4 476 462 6 1120 145	21 1116 106 17 1126 149 17 688 678 15 501 482 13 716 726	6 881 909 8 742 748 10 851 838 12 611 613 14 538 506	7 622 622 5 544 510 3 695 671 1 614 626
2 723 717 4 366 313 6 200 216 8 364 355 10 530 545	N, 6, 5 25 253 275 23 112- 107	14 1520 1530 16 184 896 15 1148 1135 20 579 586	27 188 184 8,11,6	3 467 462 1 5*9 594 H,21,7	A 733 769 1' 1304 1367 12 P26 832 14 488 428	16 AC4 444 18 243 214 20 401 384 22 116 45	13 115+ 46 11 346 374 9 318 290 7 569 582	8 241 258 10 1140 163 8,18,9	11 742 725 9 1295 1294 7 898 886 5 798 867	16 109 72 18 337 317 21 113 18	R, 18, 11 2 429 439 9 112+ 182
12 107+ 174 14 742 727 16 108+ 89 18 546 524	21 743 738 19 293 304 17 464 447 15 657 499	24 331 312 9,3,6	19 252 287 17 309 311 15 337 310 13 454 465	2 856 826 8 119 2 6 501 830 9 196 153	16 519 489 18 259 239 2' 1120 185 22 352 349	R, 1, P 23 230 194 21 193 167	5 467 499 3 998 988 1 4'9 388	11 314 315 9 368 361 7 316 327 5 637 631	H, 5, 9	H, 5, 17 14 510 481 17 421 626 15 159 76	6 183 157 8 113• 185 10 300 259 8.19.13
H,16,5 19 379 344 17 235 242	13 1774 1751 11 829 833 9 1306 1369 7 271 232 5 932 301	23 397 920 21 365 372 17 978 987 17 596 762 15 161 229	11 517 532 9 388 368 7 570 659 5 891 851 3 664 636	10 113+ 18r 12 253 258 8,20,7	R,R,7 21 161 91 10 028 002	19 649 618 17 412 416 15 398 4 2 13 604 476	2 1236 1229 4 313 249 6 82" 882	3 330 443 1 352 353 N, 17, 9	2 1610 1596 4 1070 1108 6 764 770 8 410 396 10 691 673	13 946 845 11 392 381 9 419 417 7 1100 1103	7 281 270 5 208 238 3 291 262
15 311 344 13 412 405 11 466 498 9 229 236 7 713 751	3 71° 726 1 274 364 H.5.5	13 139 995 11 1385 1393 3 1137 1163 7 996 1009	1 001 881 H, 18,6	13 214 149 11 149 14 0 488 496 7 517 595	14 207 177 13 309 125 11 745 740 9 1060 1047	17 547 545 9 1171 1137 7 1172 1145 5 1595 1584 3 1362 1362	R 261 247 10 276 276 12 216 214 14 948 926 16 216 243	2 106+ 105 4 324 322 5 656 652 8 299 313 10 196 301	12 823 433 14 194 174 16 902 907 18 648 602	3 1554 1581 1 419 634 8,6,17	R, 20, 10 2 203 206
5 402 ±08 3 935 927 1 632 627	2 1951 1994 * 1738 1691 * 943 988 * 258 264	л 542 875 3 753 732 1 79• 72 Н, 4, 6	4 1342 1353 6 1082 1353 6 289 302 10 210 182	1 517 493 1 517 493 1 343 353	7 649 688 5 885 900 3 865 876 3 583 517	1 1430 139A H, 2, P	18 636 633 8,13,8	12 399 JA3 14 186 123 8,16,9	H,4,9 21 39C 370	2 674 700 4 582 586 6 994 50 9 530 656	4 168 146 N, 18, 11 5 100 347
H, 15, 5 2 525 544 4 404 347 5 403 447	10 370 383 12 927 908 14 322 307 16 398 340 19 277 30	2 1301 1327 9 998 1029 6 1914 1898 8 1543 1544	12 957 926 14 907 900 16 841 841 19 483 461	2 A60 P39 4 400 379 4 539 531	N,7,7 2 198 170 4 971 1004	4 1060 1064 6 817 308 9 2212 221 10 986 934	17 297 298 15 81: 805 13 539 531 11 563 567	15 216 178 13 394 376 11 352 336 9 111e 136	19 644 607 17 664 634 15 717 680 13 179 151	10 324 305 12 423 449 14 665 671 16 210 180	3 303 307 1 403 395 8,17,11
8 978 960 10 318 293 12 557 556 14 213 224	20 342 332 72 249 265 24 294 319	10 958 987 12 1146 1127 14 244 244 16 1024 131	H, 15, 5	10 22 424 10 209 187 12 1136 143 14 1126 38	7 485 526 8 468 453 10 1361 1346 12 378 415 14 430 ±33	12 2103 2087 14 895 886 16 171 196 19 223 229 20 816 411	9 401 873 7 811 810 5 712 709 3 647 639	7 20C 2C4 5 447 469 3 751 892 1 698 667	9 679 515 7 795 754 5 782 901 3 1631 1671	H, 7, 17 19 286 298	2 322 308 4 297 298 6 114• 113 8 374 392
16 281 267 18 473 464 20 174 142 H, 14.5	H, B, S 25 177 136 21 318 133 21 511 412	14 428 437 20 1094 52 22 113 346 24 258 251	17 216 247 15 276 301 11 577 492 11 778 796	H, 18,7 15 428 421 13 557 517	16 299 252 18 512 496 26 192 149 22 119 294	22 327 337 H, 3, A	R, 14, A 2 378 364	H. 15.9 2 481 494 4 456 463	1 549 558 H, 3, 9 2 483	17 564 548 15 68° 677 13 108° 153 11 836 836	N, 16, 11 9 293 301
21 289 293 19 544 495 17 55C 464	13 305 337 17 1010 98 15 179 190 13 1037 1063	H, 5, 4 23 187 346 21 398 405	7 316 316 5 339 346 3 34A 348 1 406 4C1	9 213 211 7 575 570 5 456 417 3 575 979	H,4,7 21 290 310 21 559 539	23 116• 154 21 484 434 19 741 733 17 246 222 15 701 715	4 256 285 6 342 355 8 1:12 1040 10 553 549 1 12 761 770	6 161 179 8 629 618 10 271 277 12 774 735	4 272 241 6 984 955 8 505 496 10 533 567	7 371 360 5 1052 1084 3 994 162 1 909 904	7 353 338 5 112+ 196 3 387 355 1 110+ 54
15 586 582 13 367 369 11 449 458 9 405 446 7 234 257	11 936 956 9 1735 1435 7 444 44 5 913 729 3 1974 1061	19 671 666 17 548 519 15 609 607 13 1652 1683 11 415 465	H, 16, 6 2 255 294	1 928 910 H, 17, 7 2 380 300	10 1040 144 17 1010 125 16 211 203 13 470 870	13 496 6°0 11 343 271 9 1169 1217 7 1181 1146	14 1^9. 145 16 246 236 18 11'. 127	H, 14, 9	12 598 546 19 220 196 16 498 871 18 197 226 20 220 229	H, B, 10 2 344 350	R, 15, 11 2 411 802 4 545 527
5 855 844 3 1045 1/45 1 1396 1 184	1 594 572	9 164 194 7 649 ,83 5 1 195 1 388	6 666 649 9 10 524 10 911 912	u ur us	0 1668 1667 7 122 381 5 1428 1893	3 3×1 3*1 3 3×1 3*1 1 1077 1091	H, 15, 8 1 17 112+ 13A 1 15 325 313 1	7 278 275 5 319 315 3 326 316 1 388 375	N. 2, 9 21 576 567	6 223 199 8 486 459 10 102+ 151 12 484 461	8 107+ 80 10 198 143

Tabelle 8 (Fort.)

MANFRED STURM, FRANZ BRANDL, DENNIS ENGEL UND WALTER HOPPE 2377

Tabelle 8 (Fort.)

4,10,11	4,9,11	1 9 577 551	1 12 461 592	12 911 795	4.7.12	H, 12, 17	1 1'0. 124	8,7,11	8,1,13		H, 1C, 14
9 763 719	2 421 411	10 102+ 108	12 676 596	14 152 121	14 209 328	2 1041 1073		13 252 221	2 242 255	1 429 637	2 164 164
7 224 243	- 503 S.T	12 230 201	16 716 710		11 491 476	4 216 130 6 417 197	*, 12, 11	9 219 194	1 1.7 104	H.4.14	4 32 304
3 421 410	9 248 223	14 475 496		1, 1, 1, 1	400 400 C	e 104. 5	7 269 269	7 434 424	9 251 26:		н, 11, 14
1 481 467	1: 593 551	19 224 225	R,C,11	15 319 347	- 1-6 167	10 110+ 90	6 144 101	5 5-6 (1)	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2 232 235	3 261 284
w 11 11	12 474 449	9.4.11	19 340 355	33 631 544	1 172 3.1	1 2 10 3 3	1 302 370	1 389 375		5 221 185	1 207 206
	14 229 236		17 460 430	· 243 316	1 449 886	4,13,12		· · · · ·		P7 676	
2 925 99		17 11. 26	15 566 547	7 241 252		1 1 100 61		******		1. 5. 11	7
6 919 - 912	4,8,11	13 367 344	11 709 702	1	1, 1, 1, 17	9 198 21"	2 322 342	2 443 437	13 440 473	8,5,14	1 438 415
8 364 163	17 169 123	11 454 455	9 202 200	1 795 769	2 1 79 1065	7 334 3 3	4 1 4. 30	6 374 789	11 293 235		
10 721 71	15 364 351	3 329 929	7 485 642		4 687 696	3 299 257	8 1344 169	6 141 132	7 297 297	7 1 2 14	
12 1110 47	11 614 457	4 1.2. 93	3 737 497		P 224 2"7	1 416 800		10 963 929	5 631 621	· 12* 430	2 11.00 77
R, 12, 11	P 128 310	3 696 698	1 791 925	2 433 613	1. 157 126		", 1", 17	12 240 241	1 847 491	3 104 224	4 1130 104
	7 157 159	1 525 698		4 217 228	10 000 011	H. 14, 12	0 446 467	H.B.13	1 103 112	1	8, 9, 15
11 972 999	3 635 78	8.3.11		A 330 355		2 307 288	7 101 154		H.C.14	H,6,14	
9 333 341	1 4 9 490		0 1120 1104	1 241 244	", 0, 12	a 107 3PH	5 55 59	17 387 377			5 536 519
7 543 557		2 477 564	2 231 276	12 116 216	12 246 266	8 197 617	1 201 011	9 609 611	1 159 179	4 442 403	1 444 450
3 177 147		5 299 291	6 299 29*	16 234 211	1 12			7 282 3:1	6 612 505	6 3R" 343	
1 399 417	2 452 454	8 160 115	A 249 275		C P/5 872	P, 15, 12) ¥,9,13	5 434 44	P 216 190	8 2.1 249	H, 3, 15
	4 723 721	12 112 282	12 545 510	4.1.12	e 740 717	2 106 134	2 442 444	1 659 640	1. 411 3.7	8.7.14	2 595 595
····	4 662 665	1 1 2 673	14 2** 217	14 106 137	3 43 521	5 11's R1	4 445 471		н, 1, 14		4 569 564
2 479 521	11 1125 1279	16 421 299	16 294 289	13 461 456	1 295 20	3 507 511	A 100 214	9,3,13		3 112+ 75	
4 1014 32	12 685 473	14 350 344		0 533 503	N 10 17	1 201 101	10 164 184	2 674 -67	9 267 266	5 255 275	n. 2. 15
8 319 314	15 571 529	4,2,11		7 1136 117		H. 16.12		5 6re 63:	* 113 115	1 1114 118	5 175 139
12 371 34:			17 411 422	\$ 124 317	2 169+ 147		H, 9, 13	4 1CA. 173	5 450 426	1 384 392	3 221 240
12 189 155	8,6,11	15 116 53	11 119 304	1 447 419	A 127 121	350 343	11 113 325	1: 291 275	1 296 260	H.B. 14	1 114 200
14 408 499	17 111. 146	1 13 107+ 163	11 332 300		0 444 476	6 114+ 15A	a 216 100	12 104 157			H, 1, 15
4, 12, 11	15 399 420	11 614 582	7 262 225	H.6.12	10 200 284	1	621 641	14 234 216	4,2,14	2 419 387	3 300 336
16 306 363	13 659 626	9 617 416	5 974 55	2 274 379	12 134 355	1, 17, 12	1 21 211	1 1.2.14	2 1019 1011	6 141 131	9 230 297
13 692 652	4 925 923	5 502 503	3 324 300	4 416 61	H, 11, 12	1 406 374	1 411 386		4 292 322	3 1"42 1007	6 415 412
11 424 419	7 "61 "57	3 "44 787	1 347 136	6 631 6.7				13 250 195	5 e72 e31		
9 776 742	5 496 694	1 903 826		A 492 479	13 127 299	H, 14, 13	H.7.13	11 251 267	1 1 1 1 1 1 1 1	11, 9, 14	H, 7, 15
5 #28 613	1 495 522	8.1.11		12 531 518	0 343 345	3 112+ 103	2 421 543	7 239 149	1	7 261 251	5 1110 106
3 509 471			2 26: 236	14 113+ 152	7 736 726	1 113. 114	4 603 596	5 627 627	H,3,14	5 207 191	1 430 610
1 107+ 133	9,5,17	2 710 804	4 1 26 1061	16 115. 187	3 1 5 4 30 460		4 23P 23R	3 17. 171	1 1 11 10	1 1 101 369	1 7140 135
	2 423 428	6 216 233	9 956 939		1 111. 154		1. 1 8. 24	1	3 167 172	1	
	4 652 645	R 678 674	10 330 342	I	1	2 215 241	12 234, 221	I	7 243 236	1 1	1

.

Tabelle	9.	Aus	den	acht	Imida	izolri	ingen	ermittelt
Schätzw	erte	für	Bind	dungsl	ängen	(\overline{l})	und	Bindungs
				winke	l (ā)			

	I	$\bar{\sigma}$	$\bar{\sigma}^{i}$	2	s ²
C(2) - N(3)	1.318	0,0076	0,000	058	0,000048
C(2) - N(1)	1,329	0,0075	0,000	057	0,000214
N(3) - C(4)	1,358	0,0084	0,000	071	0,000177
N(1) - C(5)	1,368	0,0087	0,000	076	0,000108
C(4) - C(5)	1,345	0,0103	0,000	0106	0,000200
		$\overline{\omega}$	ō	$\bar{\sigma}^2$	s ²
N(3)-C(2)-N(1)		115,2	0,53	0,28	0,93
C(2) - N(3) - C(4)		103,7	0,50	0,25	1,53
N(3) - C(4) - C(5)		109,1	0,60	0,36	1,07
N(1) - C(5) - C(4)		109,0	0,61	0,37	0,24
C(2) - N(1) - C(5)		103,0	0,51	0,26	0,53
Co - N(3) - C(2)		126,3	0,40	0,16	6,84
Co - N(3) - C(4)		128,5	0,42	0,18	2,06
Co-N(1)-C(2)		127,8	0,41	0,16	11,67
Co = N(1) - C(5)		128,9	0,43	0,19	11,66

e Tabelle 11. Schätzwerte für die Winkel (°) zwischen den s- besten Ebenen durch die Imidazolringe

	Ringbezeichn	ung siehe Tabelle 12.	
A-B	88.3	C-E	79,2
A-C	84,9	C-F	86,2
A-D	83,9	C-G	82,0
A-E	27,6	C-H	84,1
A-F	9,9	D-E	78,8
A-G	51,4	D-F	87,2
A-h	t 60,7	D-G	55,2
B-C	55,6	D-H	67,6
B-D	81,9	E–F	37,5
B E	62,6	E-G	29,2
B-F	82,9	E-H	87,3
B-G	57.8	F-G	60,7
B-H	48,0	F-H	51,0
C-L	28,3	G-H	68,7

Tabelle 10. Arithmetische Mittel und Wurzeln aus den mittleren quadratischen Abweichungen aller in der asymmetrischen Einheit befindlichen chemisch äquivalenten Bindungslängen und Bindungswinkel

Bindungslängen	<i>l</i> (Å)	s (Å)
NC(2)	1,323	0,011
N - C(4) bzw. C(5)	1,363	0,012
C(4) - C(5)	1,345	0,014
N—Co	1,984	0,010
Bindungswinkel	$\overline{\omega}$ (Grad)	s (Grad)
NCN	119,2	1,0
C	103,4	1,0
NCC	109,0	0,8
Co-NC(2)	127,1	2,9
Co-N-C(4) bzw. $C(5)$	128,7	2,5
N—Co-N	109,5	4,3

 Tabelle 12. Abstände (Å) von den besten Ebenen durch die Imidazolringe

Ring A		Ring	g <i>B</i>
N(11)	-0,001	N(21)	0,004
C(12)	0,005	C(22)	-0,002
N(13)	-0,006	N(23)	0,002
C(14)	0,005	C(24)	-0,001
C(15)	-0,004	C(25)	-0,002
Co(2)	-0,348	Co(2)	-0,227
Co(1)	-0,193	Co(1)	-0,560
Ring C		Ring	g D
N(31)	0,003	N(41)	0,005
C(32)	-0,006	C(42)	0,002
N(33)	0,007	N(43)	-0,008
C(34)	-0,005	C(44)	0,012
C(35)	0,001	C(45)	-0,011
Co(2)	-0,036	Co(4)	-0,148
Co(3)	-0,141	Co(1)	-0,500

Tabelle 12 (Fort.)

Rin	g E	Ring	g F
N(51)	-0,004	· N(61)	-0,005
C(52)	0,001	C(62)	0,000
N(53)	0,002	N(63)	0,004
C(54)	-0,005	C (64)	-0,008
C(55)	0,006	C(65)	0,008
Co(4)	-0,415	Co(4)	-0,109
Co(3)	-0,231	Co(3)	0,087
Rin	g G	Ring	g H
Ring N(71)	$G_{-0,005}$	Ring N(81)	g H -0,018
Rin; N(71) C(72)	g G -0,005 0,008	Ring N(81) C(82)	g H -0,018 0,021
Ring N(71) C(72) N(73)	g G - 0,005 0,008 - 0,006	Ring N(81) C(82) N(83)	g H -0,018 0,021 -0,013
Ring N(71) C(72) N(73) C(74)	g G - 0,005 0,008 - 0,006 0,002	Ring N(81) C(82) N(83) C(84)	$\begin{array}{c} g \ H \\ -0,018 \\ 0,021 \\ -0,013 \\ 0,001 \end{array}$
Ring N(71) C(72) N(73) C(74) C(75)	g G -0,005 0,008 -0,006 0,002 0,002	Ring N(81) C(82) N(83) C(84) C(85)	g H - 0,018 0,021 - 0,013 0,001 0,010
Rin; N(71) C(72) N(73) C(74) C(75) Co(2)	$\begin{array}{c} g \ G \\ -0,005 \\ 0,008 \\ -0,006 \\ 0,002 \\ 0,002 \\ -0,012 \end{array}$	Ring N(81) C(82) N(83) C(84) C(85) Co(4)	g H - 0,018 0,021 - 0,013 0,001 0,010 0,374

andern die gegenseitige Vernetzung der Schrauben bewirken. Dieses in sich verspannte Schraubengerüst wird im wesentlichen durch die Bindungsabstände Co-Imidazol und durch die Bindungswinkel Co-Imidazol determiniert. Diese definierten molekularen Bindungen bewirken trotz der einfachen Bausteine eine komplizierte polare Struktur. Die Umgebung der Co-Atome ist verzerrt tetraedrisch (Winkel vgl. Tabelle 7).

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt. Für diese Förderung sprechen wir unseren besten Dank aus.

Literatur

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- BIJVOET, J. M., PEERDEMAN, A. F. & VAN BOMMEL, A. J. (1951). Nature, Lond. 168, 271–272.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CRUICKSHANK, D. W. J. & MCDONALD, W. S. (1967). Acta Cryst. 23, 9-11.
- ENGEL, D. W. (1972). Acta Cryst. B28, 1496-1509.
- ENGEL, D. W. & STURM, M. (1974). Conference on Anomalous Scattering, Madrid, 22.–26. 4. 74.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- HEINHOLD, J. & GAEDE, K. W. (1964). Ingenieur-Statistik, 1. Aufl., S. 181–195. München-Wien: R. Oldenbourg Verlag.

HUBER, R. & KOPFMANN, G. (1969). Acta Cryst. A 25, 143–152.

- International Tables for X-ray Crystallography (1952). Bd. I, 1. Aufl., S. 170. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1962). Bd. III. 1. Aufl., S. 202–205. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- MARTÍNEZ-CARRERA, S. (1966). Acta Cryst. 20, 783-789.
- SEEL, F. & RODRIAN, J. (1969). J. Organometal. Chem. 16, 479-484.
- STEWART, J. M. & HIGH, D. (1963). X-RAY 63, Program System for X-ray Crystallography, Depts. of Chemistry, Univ. of Washington, Seattle and Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- STURM, M. & HOPPE, W. (1972). Allgem. prakt. Chem. 23, 96. WILL, G. (1963a). Z. Kristallogr. 119, 1–14.
- WILL, G. (1963b). Nature, Lond. 198, 575.

Acta Cryst. (1975). B31, 2378

Structure Cristalline et Moléculaire d'un Nouvel Alcaloïde Indolique, l'Akagérine: C20H24N2O2

PAR L. DUPONT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

ET L. ANGENOT

Laboratoire de Pharmacognosie, Institut de Pharmacie, Université de Liège, Rue Fusch 5, B-4000, Liège, Belgique

(Reçu le 7 mars 1975, accepté le 19 mars 1975)

Akagerine is a new indolic alkaloid first isolated by Angenot from roots of *Strychnos usambarensis*. The crystal structure was determined by direct methods from three-dimensional diffractometer data. The crystals are tetragonal, space group $P4_12_12$ or $P4_32_12$ with a=b=9.255, c=42.165 Å, Z=8. The parameters were refined with full-matrix least-squares calculations to a final *R* value of 0.056. The absolute configuration was not determined. This is the first report of a seven-membered ring with an N(1)–C(17) bond (conventional notation for indolic alkaloid). The lone-pair of electrons on N(4) is *cis* with respect to C(3)H and C(15)H. The cohesion of the structure is the result of one hydrogen bond OH···N (2.770 Å) and van der Waals interactions.

Introduction

L'akagérine est un nouvel alcaloïde indolique extrait des racines de *Strychnos usambarensis* Gilg provenant

du Parc National de l'Akagera (Ruanda). Les techniques spectrométriques (u.v., i.r., r.m.n. et masse) ont fourni la formule brute et des éléments de structure (Angenot, Dideberg & Dupont, 1975); la présente